Code: EC6T4, EM6T1, EE6T6

III B. Tech - II Semester - Regular Examinations - May 2015

DIGITAL SIGNAL PROCESSING (Common for ECE, ECM, EEE)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1 a) Determine whether the following systems are linear, causal, time-invariant and stable.

 6 M
 - (i) $y(n) = x(n) \cos(x(n))$
 - (ii) y(n) = x(n) + n x (n+1).
 - b) Suppose an LTI system with input x(n) and output y(n) is characterized by its unit sample response $h(n) = (0.8)^n u(n)$. Find the response y(n) of such a system to the input signal x(n) u(n).
- 2 a) Obtain the parallel form and cascade form for the system described by a difference equation 8 M

$$y(n) = \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2) + x(n) - \frac{1}{2}x(n-1).$$

b) Determine the pole and zero plot for the system described by the difference equation 6 My(n) = x(n) + 2x(n-1) - 4x(n-2) + x(n-3).

3 a) Find the convolution sum of
$$x(n) = 1$$
, $n = -2$, 0 , 1

$$= 2$$
, $n = -1$

$$= 0$$
, elsewhere
and $h(n) = \delta(n) - \delta(n-1) + \delta(n-2) - \delta(n-3)$.

- b) State and prove any two properties of DFT. 4 M
- 4 a) Compute the eight -point DFT for the sequence $x(n)=\{0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0\}$ using Radix-2 DIT algorithm.
 - b) Discuss the use of FFT algorithm in linear filtering. 6 M
- 5 a) Derive bilinear transformation for an analog filter with system function H(s) = b/s + a 7 M
 - b) For the analog transfer function H(s) = 2 / (s+1) (s+3), determine H (z) using bilinear transformation with T=0.1 sec.
- 6 a) Design a HPF of length 7 with cut off frequency of2 rad/sec using Hamming window. Plot the magnitude and phase response.8 M
 - b) Explain the principle and procedure for designing FIR filter using rectangular window.

 6 M

- 7 a) With the help of equation, explain sampling rate conversion by a rational factor I/D.

 6 M
 - b) Explain the concept of decimation by a factor D and obtain necessary equations.

 8 M
- 8 a) Explain the application of speech compression. 8 M
 - b) Write short notes on speech vocoders and subband coding.

 6 M